Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry

Identifieur interne : 012107 ( Main/Repository ); précédent : 012106; suivant : 012108

Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry

Auteurs : RBID : Pascal:00-0245790

Descripteurs français

English descriptors

Abstract

We examine the use of spectroscopic ellipsometry (SE) for fully automated, in situ real-time control of the barrier thickness for resonant tunneling diodes (RTDs) grown by molecular-beam epitaxy (MBE). The RTDs in this study utilize AlAs barriers, an InGaAs well with an InAs subwell, and lattice-matched InGaAs spacer layers, grown on an InP(100) substrate. Pseudodielectric functions for the strained AlAs barriers were generated from SE data acquired during MBE growth, using simultaneous photoemission oscillation measurements for in situ thickness calibration. For closed-loop control, the measured dielectric functions were utilized in conjunction with a virtual substrate model to derive the instantaneous layer thickness from real-time SE data. Repeatability was tested by growing several series of AlAs barriers and complete RTDs under fully automated control, with shutter actuation based on the real-time thickness determined from SE. The results show that by using SE for real-time control, barrier thickness repeatability on the order of ±0.1 ML can be achieved. © 2000 American Vacuum Society.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:00-0245790

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry</title>
<author>
<name sortKey="Roth, J A" uniqKey="Roth J">J. A. Roth</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HRL Laboratories, LLC, Malibu</wicri:cityArea>
</affiliation>
<affiliation wicri:level="2">
<inist:fA14 i1="02">
<s1>The J. A. Woollam Company, Inc., Lincoln, Nebraska 68508</s1>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Nebraska</region>
</placeName>
<wicri:cityArea>The J. A. Woollam Company, Inc., Lincoln</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Williamson, W S" uniqKey="Williamson W">W. S. Williamson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HRL Laboratories, LLC, Malibu</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chow, D H" uniqKey="Chow D">D. H. Chow</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HRL Laboratories, LLC, Malibu</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Olson, G L" uniqKey="Olson G">G. L. Olson</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HRL Laboratories, LLC, Malibu</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Johs, B" uniqKey="Johs B">B. Johs</name>
<affiliation wicri:level="2">
<inist:fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>HRL Laboratories, LLC, Malibu</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">00-0245790</idno>
<date when="2000-05">2000-05</date>
<idno type="stanalyst">PASCAL 00-0245790 AIP</idno>
<idno type="RBID">Pascal:00-0245790</idno>
<idno type="wicri:Area/Main/Corpus">013088</idno>
<idno type="wicri:Area/Main/Repository">012107</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1071-1023</idno>
<title level="j" type="abbreviated">J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</title>
<title level="j" type="main">Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aluminium compounds</term>
<term>Ellipsometry</term>
<term>Experimental study</term>
<term>Gallium arsenides</term>
<term>III-V semiconductors</term>
<term>Indium compounds</term>
<term>Measuring methods</term>
<term>Molecular beam epitaxy</term>
<term>Resonant tunneling diodes</term>
<term>Semiconductor growth</term>
<term>Thickness control</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>8530K</term>
<term>8530M</term>
<term>0760F</term>
<term>8115H</term>
<term>7361E</term>
<term>8105E</term>
<term>Etude expérimentale</term>
<term>Méthode mesure</term>
<term>Diode effet tunnel résonnant</term>
<term>Ellipsométrie</term>
<term>Epitaxie jet moléculaire</term>
<term>Croissance semiconducteur</term>
<term>Contrôle épaisseur</term>
<term>Aluminium composé</term>
<term>Indium composé</term>
<term>Gallium arséniure</term>
<term>Semiconducteur III-V</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We examine the use of spectroscopic ellipsometry (SE) for fully automated, in situ real-time control of the barrier thickness for resonant tunneling diodes (RTDs) grown by molecular-beam epitaxy (MBE). The RTDs in this study utilize AlAs barriers, an InGaAs well with an InAs subwell, and lattice-matched InGaAs spacer layers, grown on an InP(100) substrate. Pseudodielectric functions for the strained AlAs barriers were generated from SE data acquired during MBE growth, using simultaneous photoemission oscillation measurements for in situ thickness calibration. For closed-loop control, the measured dielectric functions were utilized in conjunction with a virtual substrate model to derive the instantaneous layer thickness from real-time SE data. Repeatability was tested by growing several series of AlAs barriers and complete RTDs under fully automated control, with shutter actuation based on the real-time thickness determined from SE. The results show that by using SE for real-time control, barrier thickness repeatability on the order of ±0.1 ML can be achieved. © 2000 American Vacuum Society.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1071-1023</s0>
</fA01>
<fA02 i1="01">
<s0>JVTBD9</s0>
</fA02>
<fA03 i2="1">
<s0>J. vac. sci. technol., B., Microelectron. nanometer struct. process. meas. phenom.</s0>
</fA03>
<fA05>
<s2>18</s2>
</fA05>
<fA06>
<s2>3</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>ROTH (J. A.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WILLIAMSON (W. S.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>CHOW (D. H.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>OLSON (G. L.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>JOHS (B.)</s1>
</fA11>
<fA14 i1="01">
<s1>HRL Laboratories, LLC, Malibu, California 90265</s1>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>The J. A. Woollam Company, Inc., Lincoln, Nebraska 68508</s1>
</fA14>
<fA20>
<s1>1439-1442</s1>
</fA20>
<fA21>
<s1>2000-05</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>11992 B</s2>
</fA43>
<fA44>
<s0>8100</s0>
<s1>© 2000 American Institute of Physics. All rights reserved.</s1>
</fA44>
<fA47 i1="01" i2="1">
<s0>00-0245790</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of vacuum science & technology. B. Microelectronics and nanometer structures. Processing, measurement and phenomena</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We examine the use of spectroscopic ellipsometry (SE) for fully automated, in situ real-time control of the barrier thickness for resonant tunneling diodes (RTDs) grown by molecular-beam epitaxy (MBE). The RTDs in this study utilize AlAs barriers, an InGaAs well with an InAs subwell, and lattice-matched InGaAs spacer layers, grown on an InP(100) substrate. Pseudodielectric functions for the strained AlAs barriers were generated from SE data acquired during MBE growth, using simultaneous photoemission oscillation measurements for in situ thickness calibration. For closed-loop control, the measured dielectric functions were utilized in conjunction with a virtual substrate model to derive the instantaneous layer thickness from real-time SE data. Repeatability was tested by growing several series of AlAs barriers and complete RTDs under fully automated control, with shutter actuation based on the real-time thickness determined from SE. The results show that by using SE for real-time control, barrier thickness repeatability on the order of ±0.1 ML can be achieved. © 2000 American Vacuum Society.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D03F03</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D03F01</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B00G60F</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="05" i2="3">
<s0>001B70C61E</s0>
</fC02>
<fC02 i1="06" i2="3">
<s0>001B80A05H</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>8530K</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>8530M</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>0760F</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>8115H</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>7361E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>8105E</s0>
<s2>PAC</s2>
<s4>INC</s4>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Etude expérimentale</s0>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Experimental study</s0>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Méthode mesure</s0>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Measuring methods</s0>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Diode effet tunnel résonnant</s0>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Resonant tunneling diodes</s0>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Ellipsométrie</s0>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Ellipsometry</s0>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Croissance semiconducteur</s0>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Semiconductor growth</s0>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Contrôle épaisseur</s0>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Thickness control</s0>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Aluminium composé</s0>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Aluminium compounds</s0>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Indium composé</s0>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium compounds</s0>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Gallium arséniure</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
</fC03>
<fN21>
<s1>164</s1>
</fN21>
<fN47 i1="01" i2="1">
<s0>0023M000527</s0>
</fN47>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 012107 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 012107 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:00-0245790
   |texte=   Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024